My Location

Enter your ZIP code so we can provide the most accurate inventory and delivery information.

Use My Location

See Full Map
Set Your Preferred Retailer

Use My Location

See Full Map
My Retailer

None saved

Other Stores Near You

Reinventing Round

Innovate or Die

This a tale of two teams and two visions that created the most technically advanced bike Specialized has ever made. This bike will change the way we make bikes forever, and it carries its innovations in a deceptively classic package, built from a simple goal — create the ride of your life.

Three years ago, as our road product team at our Morgan Hill, CA, Innovation Center focused on more integration in the name of aerodynamics, squeezing out every watt per kilo and reducing every gram of drag, they began to dream of a new way. Is there a space for a classic bike with refined lines, simple cable routing, a seat collar, traditional stem, and threaded bottom bracket, all built around a frame with a singular focus on transcendent ride quality?

Meanwhile, in Specialized Freiburg, our carbon gurus had a “eureka” moment — a new theory for how forces moved through a frame. This theory proposed that shape was by far the most important variable — a more potent force for delivering ride quality than previously imagined. The team knew turning this theory into practice would require the most challenging and extensive simulation project in our history. Was there a project that could serve as a foundation for this work?

The answer to the two questions is the same, the Aethos. With the Tarmac SL7 — a race bike for every type of parcours, serving every racer’s needs — there was an opportunity to deliver a bike entirely dedicated to ride quality.

Aethos was born in the Freiburg test lab. Peter Denk, Aethos Engineering Lead, meditated on a frame in the pedal rig, watching the carbon flex and breathe under load. He watched as each fiber picked up the load and distributed it to the next. A concept, a notion, began to surface.

We experimented with ways to filter this data and make sense of it, landing on a system that discovered trends within the data. Tracing these trends with custom software, we were able to discover what single combination delivered the best overall frame performance.

When we built the first raw frame it was only 545 grams. It performed so well in the test jig it required just 10 grams more to be test ride ready. At this point, the team knew they had discovered something monumental. Peter’s hunch was right. Conventional thinking about frame shapes was wrong.

Aethos’ deceptively simple shape delivers stiffness more efficiently than any frame before. Small diameter tubes at the bottom bracket and seat cluster are best, but we also needed a large diameter top tube and down tube to mate to the larger head tube. How the top tube and down tube taper to the bottom bracket and seat cluster is equally important.

The shape of these junctions has a massive effect on stiffness and stability under load. The subtlest change in curvature creates massive performance differences. Surprisingly, what is less important than previously thought is a big down tube mating to a big bottom bracket.